Integration
You should be able to create a mesh now. If it is not the case, get back to the section Mesh.
1. Integrals
Feel++ provide the integrate() function to define integral expressions which can be used to compute integrals, define linear and bi-linear forms.
1.1. Interface
integrate( _range, _expr, _quad, _geomap );
Please notice that the order of the parameter is not important, these
are boost
parameters, so you can enter them in the order you
want. To make it clear, there are two required parameters and 2
optional and they of course can be entered in any order provided you
give the parameter name. If you don’t provide the parameter name (that
is to say _range
= or the others) they must be entered in the order
they are described below.
Required parameters:
-
_range
= domain of integration -
_expr
= integrand expression
Optional parameters:
-
_quad
= quadrature to use instead of the default one. Several ways are possible to pass the quadrature order for backward compatibility
API |
Example |
Explanation |
Version |
|
|
Pass the quadrature order as an integer, the default quadrature is used |
v0.105 |
|
|
Pass the default quadrature formula on a triangle to integrate exactly order 5 polynomials |
v0.105 |
|
|
Pass the default quadrature formula on a mesh |
v0.105 |
|
|
Pass the quadrature order at compile time to integrate exactly order 5 polynomials. It will be deprecated in a future release |
up to v0.105 |
Starting from v0.105, quadratures are built at runtime and no more at compile time which means that quadrature orders can be adjusted dynamically, e.g from a command line option |
-
_geomap
= type of geometric mapping to use, that is to say:
Feel Parameter |
Description |
|
High order approximation (same of the mesh) |
|
Optimal approximation: high order on boundary elements order 1 in the interior |
|
Order 1 approximation (same of the mesh) |
1.2. Example
From doc/manual/tutorial/dar.cpp
form1( ... ) = integrate( _range = elements( mesh ),
_expr = f*id( v ) );
From doc/manual/tutorial/myintegrals.cpp
// compute integral f on boundary
double intf_3 = integrate( _range = boundaryfaces( mesh ),
_expr = f );
From doc/manual/advection/advection.cpp
// using default quadrature
form2( _test = Xh, _trial = Xh, _matrix = D ) +=
integrate( _range = internalfaces( mesh ),
_quad = 2*Order,
_expr = ( averaget( trans( beta )*idt( u ) ) * jump( id( v ) ) )
+ penalisation*beta_abs*( trans( jumpt( trans( idt( u ) )) )
*jump( trans( id( v ) ) ) ),
_geomap = geomap );
// use deprecated _Q
form2( _test = Xh, _trial = Xh, _matrix = D ) +=
integrate( _range = internalfaces( mesh ),
_quad = _Q<2*Order>(),
_expr = ( averaget( trans( beta )*idt( u ) ) * jump( id( v ) ) )
+ penalisation*beta_abs*( trans( jumpt( trans( idt( u ) )) )
*jump( trans( id( v ) ) ) ),
_geomap = geomap );
From doc/manual/laplacian/laplacian.cpp
auto l = form1( _test=Xh, _vector=F );
l = integrate( _range = elements( mesh ),
_expr=f*id( v ) ) +
integrate( _range = markedfaces( mesh, "Neumann" ),
_expr = nu*gradg*vf::N()*id( v ) );
2. Computing my first Integrals
This part explains how to integrate on a mesh with Feel++ (source
doc/manual/tutorial/myintegrals.cpp
).
Let’s consider the domain \(\Omega=[0,1]^d\) and associated meshes. Here, we want to integrate the following function
on the whole domain \(\Omega\) and on part of the boundary \(\Omega\).
There is the appropriate code:
int
main( int argc, char** argv )
{
// Initialize Feel++ Environment
Environment env( _argc=argc, _argv=argv,
_desc=feel_options(),
_about=about( _name="myintegrals" ,
_author="Feel++ Consortium",
_email="feelpp-devel@feelpp.org" ) );
// create the mesh (specify the dimension of geometric entity)
auto mesh = unitHypercube<3>();
// our function to integrate
auto f = Px()*Px() + Py()*Py() + Pz()*Pz();
// compute integral of f (global contribution)
double intf_1 = integrate( _range = elements( mesh ),
_expr = f ).evaluate()( 0,0 );
// compute integral of f (local contribution)
double intf_2 = integrate( _range = elements( mesh ),
_expr = f ).evaluate(false)( 0,0 );
// compute integral f on boundary
double intf_3 = integrate( _range = boundaryfaces( mesh ),
_expr = f ).evaluate()( 0,0 );
std::cout << "int global ; local ; boundary" << std::endl
<< intf_1 << ";" << intf_2 << ";" << intf_3 << std::endl;
}
3. Mean value of a function
Let \(f\) a bounded function on domain \(\Omega\). You can evaluate the mean value of a function thanks to the mean()
function :
3.1. Interface
mean( _range, _expr, _quad, _geomap );
Required parameters:
-
_range
= domain of integration -
_expr
= mesurable function
Optional parameters:
-
_quad
= quadrature to use.-
Default =
integer
corresponding to the quadrature order, see integrate.
-
-
_geomap
= type of geometric mapping.-
Default =
GEOMAP_OPT
-
3.2. Example
mean
int main(int argc, char**argv )
{
Environment env( _argc=argc, _argv=argv,
_about=about(_name="mystokes",
_author="Feel++ Consortium",
_email="feelpp-devel@feelpp.org"));
// create the mesh
auto mesh = loadMesh(_mesh=new Mesh<Simplex< 2 > > );
// function space
auto Vh = THch<2>( mesh );
// element U=(u,p) in Vh
auto U = Vh->element();
auto u = U.element<0>();
auto p = U.element<1>();
// left hand side
auto a = form2( _trial=Vh, _test=Vh );
a = integrate(_range=elements(mesh),
_expr=trace(gradt(u)*trans(grad(u))) );
a+= integrate(_range=elements(mesh),
_expr=-div(u)*idt(p)-divt(u)*id(p));
auto syms = symbols<2>();
auto u1 = parse( option(_name="functions.alpha").as<std::string>(), syms );
auto u2 = parse( option(_name="functions.beta").as<std::string>(), syms );
matrix u_exact = matrix(2,1);
u_exact = u1,u2;
auto p_exact = parse( option(_name="functions.gamma").as<std::string>(), syms );
auto f = -laplacian( u_exact, syms ) + grad( p_exact, syms ).transpose();
LOG(INFO) << "rhs : " << f;
// right hand side
auto l = form1( _test=Vh );
l = integrate(_range=elements(mesh),
_expr=trans(expr<2,1,5>( f, syms ))*id(u));
a+=on(_range=boundaryfaces(mesh), _rhs=l, _element=u,
_expr=expr<2,1,5>(u_exact,syms));
// solve a(u,v)=l(v)
a.solve(_rhs=l,_solution=U);
double mean_p = mean(_range=elements(mesh),_expr=idv(p))(0,0);
double mean_p_exact = mean(_range=elements(mesh),_expr=expr(p_exact,syms))(0,0);
double l2error_u = normL2( _range=elements(mesh), _expr=idv(u)-expr<2,1,5>( u_exact, syms ) );
double l2error_p = normL2( _range=elements(mesh), _expr=idv(p)-mean_p-(expr( p_exact, syms )-mean_p_exact) );
LOG(INFO) << "L2 error norm u: " << l2error_u;
LOG(INFO) << "L2 error norm p: " << l2error_p;
// save results
auto e = exporter( _mesh=mesh );
e->add( "u", u );
e->add( "p", p );
e->save();
}
4. Norms
Let \(f\) a bounded function on domain \(\Omega\).
4.1. L2 norms
Let \(f \in L^2(\Omega)\) you can evaluate the \(L^2\) norm using the normL2()
function:
4.1.1. Interface
normL2( _range, _expr, _quad, _geomap );
or squared norm:
normL2Squared( _range, _expr, _quad, _geomap );
Required parameters:
-
_range
= domain of integration -
_expr
= mesurable function
Optional parameters:
-
_quad
= quadrature to use.-
Default =
_Q<integer>()
-
-
_geomap
= type of geometric mapping.-
Default =
GEOMAP_OPT
-
4.1.2. Example
From doc/manual/laplacian/laplacian.cpp
double L2error =normL2( _range=elements( mesh ),
_expr=( idv( u )-g ) );
From doc/manual/stokes/stokes.cpp
mean
int main(int argc, char**argv )
{
Environment env( _argc=argc, _argv=argv,
_about=about(_name="mystokes",
_author="Feel++ Consortium",
_email="feelpp-devel@feelpp.org"));
// create the mesh
auto mesh = loadMesh(_mesh=new Mesh<Simplex< 2 > > );
// function space
auto Vh = THch<2>( mesh );
// element U=(u,p) in Vh
auto U = Vh->element();
auto u = U.element<0>();
auto p = U.element<1>();
// left hand side
auto a = form2( _trial=Vh, _test=Vh );
a = integrate(_range=elements(mesh),
_expr=trace(gradt(u)*trans(grad(u))) );
a+= integrate(_range=elements(mesh),
_expr=-div(u)*idt(p)-divt(u)*id(p));
auto syms = symbols<2>();
auto u1 = parse( option(_name="functions.alpha").as<std::string>(), syms );
auto u2 = parse( option(_name="functions.beta").as<std::string>(), syms );
matrix u_exact = matrix(2,1);
u_exact = u1,u2;
auto p_exact = parse( option(_name="functions.gamma").as<std::string>(), syms );
auto f = -laplacian( u_exact, syms ) + grad( p_exact, syms ).transpose();
LOG(INFO) << "rhs : " << f;
// right hand side
auto l = form1( _test=Vh );
l = integrate(_range=elements(mesh),
_expr=trans(expr<2,1,5>( f, syms ))*id(u));
a+=on(_range=boundaryfaces(mesh), _rhs=l, _element=u,
_expr=expr<2,1,5>(u_exact,syms));
// solve a(u,v)=l(v)
a.solve(_rhs=l,_solution=U);
double mean_p = mean(_range=elements(mesh),_expr=idv(p))(0,0);
double mean_p_exact = mean(_range=elements(mesh),_expr=expr(p_exact,syms))(0,0);
double l2error_u = normL2( _range=elements(mesh), _expr=idv(u)-expr<2,1,5>( u_exact, syms ) );
double l2error_p = normL2( _range=elements(mesh), _expr=idv(p)-mean_p-(expr( p_exact, syms )-mean_p_exact) );
LOG(INFO) << "L2 error norm u: " << l2error_u;
LOG(INFO) << "L2 error norm p: " << l2error_p;
// save results
auto e = exporter( _mesh=mesh );
e->add( "u", u );
e->add( "p", p );
e->save();
}
4.2. H^1 norm
In the same idea, you can evaluate the H1 norm or semi norm, for any function \(f \in H^1(\Omega)\):
where \(*\) is the scalar product \(\cdot\) when \(f\) is a scalar field and the frobenius scalar product \(:\) when \(f\) is a vector field.
4.2.1. Interface
normH1( _range, _expr, _grad_expr, _quad, _geomap );
or semi norm:
normSemiH1( _range, _grad_expr, _quad, _geomap );
Required parameters:
-
_range
= domain of integration -
_expr
= mesurable function -
_grad_expr
= gradient of function (Row vector!)
Optional parameters:
-
_quad
= quadrature to use.-
Default =
_Q<integer>()
-
-
_geomap
= type of geometric mapping.-
Default =
GEOMAP_OPT
-
normH1() returns a float containing the H^1 norm.
4.2.2. Example
With expression:
auto g = sin(2*pi*Px())*cos(2*pi*Py());
auto gradg = 2*pi*cos(2* pi*Px())*cos(2*pi*Py())*oneX()
-2*pi*sin(2*pi*Px())*sin(2*pi*Py())*oneY();
// There gradg is a column vector!
// Use trans() to get a row vector
double normH1_g = normH1( _range=elements(mesh),
_expr=g,
_grad_expr=trans(gradg) );
With test or trial function u
double errorH1 = normH1( _range=elements(mesh),
_expr=(u-g),
_grad_expr=(gradv(u)-trans(gradg)) );
4.3. \(L^\infty\) norm
You can evaluate the infinity norm using the normLinf() function:
4.3.1. Interface
normLinf( _range, _expr, _pset, _geomap );
Required parameters:
-
_range
= domain of integration -
_expr
= mesurable function -
_pset
= set of points (e.g. quadrature points)
Optional parameters:
-
_geomap
= type of geometric mapping.-
Default =
GEOMAP_OPT
-
The normLinf()
function returns not only the maximum of the function
over a sampling of each element thanks to the _pset
argument but
also the coordinates of the point where the function is maximum. The
returned data structure provides the following interface
-
value()
: return the maximum value -
operator()()
: synonym tovalue()
-
arg()
: coordinates of the point where the function is maximum